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Abstract 

This paper provides an example of a methodology for evaluating the potential ‘coordinated 
effects’ of mergers in differentiated product markets. Specifically, I examine coordinated effects 
merger simulation when demand systems are linear and marginal costs are constant. I show 
that these assumptions are sufficient to ensure that analytic solutions for the required ‘collusive,’ 
‘Nash’ and ‘defection’ pricing strategies are available. Consequently the methodology outlined 
here is easy for antitrust authorities (and others) to implement. A full implementation of the 
methodology using data from the Network server market and ‘best practice’ demand structures 
is provided in Davis, Huse and Van Reenen (2006). Here I provide numerical examples, 
illustrating the techniques and demonstrating the ‘coordinated effects’ of simulated mergers. 
While the numerical results are special to the particular parameters of the demand system 
considered, the analytic results ensure that the calculations can easily be performed for 
essentially any linear demand structure and any ownership structure in the market. The 
numerical examples demonstrate clearly that mergers may enhance the likelihood of collusion 
but they also show that mergers will sometimes make collusion more difficult to sustain, in 
particular when mergers create highly asymmetric market structures. Along the way I show (i) 
that a folk theorem does not hold in general differentiated product games, and (ii) that it can be 
the small firm who is hardest to induce to collude.  
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1. Introduction 

This paper reports on a methodology for empirically determining whether firms have 
incentives to tacitly collude in differentiated product markets. The techniques I illustrate 
here will be particularly useful in merger control where policymakers must decide 
whether or not to allow proposed mergers. Currently, merger control authorities can and 
do block mergers on the basis that the smaller number of firms post-merger may make 
tacit collusion more likely. In merger evaluation, this is known as the theory of 
‘coordinated effects.’ Indeed coordinated effects were the primary reason given for 
blocking mergers until at least the early 1990’s when ‘unilateral effects,’ the idea that 
when firms producing close substitutes merge static equilibrium prices may go up, also 
emerged as a major source of concern. Recent examples in which antitrust authorities 
have invoked the theory of coordinated effects include the Nestle-Perrier, Kali and Salz, 
Gencor-Lenrho and Airtours cases in the EU jurisdiction and Safeway in the UK. (See 
Dick (2003) for a discussion of the large number of recent coordinated effects cases in 
the US.)  

When blocking mergers on the grounds of ‘coordinated effects’, the authorities follow a 
rich theoretical economics literature emphasizing that oligopolists who meet regularly in 
the marketplace may tacitly collude on higher prices. Chamberlin (1929) argued this 
point informally while Stigler (1964), Friedman (1971) and a large number of subsequent 
authors formalized this intuition in the theory of repeated games (see Aumann 
(1986,1989) and Mertens (1987) for surveys.) I merge this theoretical literature on 
repeated games with the empirical literature on the analysis of pricing games in 
differentiated product markets. In particular, I use the recent literature on the evaluation 
of the ‘unilateral’ effects of mergers (Werden and Froeb (1994), Hausman et al (1994) 
and Nevo (2001)). In doing so I hope to provide techniques which will be useful 
supplements to the quantitative techniques currently used in practice to evaluate 
coordinated effects; see Scheffman and Coleman (2003). 

In order to decide whether a merger would result in an increased likelihood of tacit 
collusion, antitrust authorities proceed by considering the presence or absence of 
conditions that facilitate collusion. Specifically, in order to sustain collusion firms must be 
able to (i) come to an agreement (which can be difficult when products are complex and 
differentiated), (ii) monitor each others’ behavior (in order to detect cheaters) and (iii) 
enforce collusive behavior collectively by punishing those incumbent firms who cheat 
(internal stability) and deterring entry by new potential rivals or expansion by a 
competitive fringe (external stability).  

In this paper, we examine when firms would be able to sustain tacitly collusive outcomes 
using the most basic enforcement mechanism suggested by the theory of repeated 
games, ‘grim’ strategies. When using a ‘grim’ strategy, a firm plays a collusive action to 
begin with and continues to do so as long as (s)he never detects that a rival has 
cheated. If cheating is detected, she plays the static Nash equilibrium strategy in all 
subsequent periods. Grim strategies provide an enforcement mechanism for tacitly 
colluding firms because they punish cheating against a collusive arrangement by 
ensuring that a cheater will sacrifice their share of future collusive profits in return for 
short run gains today. Provided firms are sufficiently patient, Friedman (1971) showed 
that, in homogeneous product settings, grim strategies will suffice to sustain tacitly 
collusive equilibria. This result is known as Friedman’s ‘folk theorem.’ One contribution of 
this paper is to provide an example demonstrating that, for grim strategies, such a folk 
theorem does not apply in differentiated product markets. 
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In sum, our aim in this paper is to take seriously the idea that dynamic oligopoly models 
can be taken to data in differentiated product markets. As Kuhn and Motta (2004) note, 
the judgment by the Court of First Instance in annulling the decision of the European 
Commission to block the Airtours merger has clarified that ‘joint dominance’ analysis in 
European mergers has to be treated as coordinated effects analysis and thus has to be 
consistent with collusion theory. Thus, our aim in this paper is to provide a natural ‘next 
step’ in developing merger simulation into a practical toolbox, one that can effectively 
allow competition authorities to consider whether competition concerns arise from either 
potential unilateral or potential coordinated effects of mergers.  

The methods presented here are most directly useful to evaluate (i) internal stability and 
(ii) one element of external stability; the incentive for the competitive fringe to expand in 
the face of a cartel. Simulation of the other key element of external stability, whether 
cartel profits would attract new entrants to the industry, requires additional information, 
for example an evaluation of the costs of entry into the industry, and would involve a 
non-trivial extension of the model.  

Our work is related to a number of prior literatures. The most directly related empirical 
literature has attempted to evaluate the existing conduct of firms using game-theoretic 
pricing models. Specifically, authors following Gollop and Roberts (1979), Bresnahan 
(1982), Lau (1982), Roberts (1983), Porter (1983), Suslow (1986), Bresnahan 
(1982,1987), Gasmi, Laffont and Vuong (1990, 1992), Nevo (1998, 2001), Slade (2004) 
and Salvo (2004) have attempted to evaluate whether observed equilibrium prices are 
more consistent with collusive or Nash equilibrium pricing.2 In contrast to this branch of 
the literature, I focus primarily on evaluating whether collusion is sustainable as an 
equilibrium.  

In the theoretical literature, some recent related theoretical contributions have begun to 
study collusion in settings with asymmetric market structures. The fact that the analysis 
must consider cases where firms are asymmetric post-merger makes theoretical 
analysis in this area challenging. Nonetheless, there is some recent progress. In 
particular, Compte, Jenny and Rey (2002) examine coordinated effects in the context of 
a Bertrand-Edgeworth homogeneous goods model with capacity constraints and 
calibrate their model with the data from the Nestle-Perrier case. In their model, capacity 
constraints mean it is the large firms who can both be tempted to cheat and also have 
the ability to punish their rivals. Thus, it is the firm with large capacities who must be 
induced to collude, perhaps by giving smaller firms spare capacity and thus an ability to 
punish their larger rivals. We will find that the opposite can also be true—that the small 
firms can be the ones who will be difficult to induce to collude. The reason is 
fundamentally the standard observation from merger models in differentiated product 
markets—that small firms like concentrated rivals because the larger or more collusively 
their rivals act, the higher the prices charged in Nash equilibrium. That fact however 
makes it difficult to induce small firms to collude, because their share of the collusive pie 
(at least in a world without side payments) will be small while their freedom to undercut 
their rivals’ prices is more valuable the more concentrated their rivals are.  

Kuhn and Motta (2004) provide the first paper to study asset transfers in differentiated 
product markets. The intuition for their conclusions regarding asymmetry is identical to 

 
 
2Salvo (2004) provides the most recent contribution to the literature, examining the determination of conduct when the potential for 
import substitution constrains the behaviour of incumbent firms to charge high prices.  
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ours while their setting is far more complex—it is one of imperfect information. 
Unfortunately, to study asset transfers theoretically they must make rather strong 
assumptions, ones that make their model difficult to consider directly as a basis for 
empirical work. For example they consider only the case when the price for every good 
sold by each firm is the same.3 For that reason, the numerical and simulation approach 
followed in this paper seems likely to be useful.  

The closest paper to our own is provided by Sabbatini (2004) of the Italian Antitrust 
Authority who has recently, and independently, suggested a similar approach to 
coordinated effects merger simulation.4  

Throughout the paper I take the stance that merger simulation is a useful and interesting 
exercise. Some authors warn that simulation results are often sensitive to the details of 
the model (see for example the discussion in Walker (2005).) Such observations 
however are not necessarily critiques—we actively want merger investigations to have 
different outcomes depending on the nature of, say, substitution patterns between 
goods. In any modeling exercise, one must always be careful to specify the empirical 
and theoretical components of the model appropriately and merger simulation exercises 
are no different in this regard. The good news is that given enough data, we will be able 
to tell models apart from one another given the right data variation (see in particular 
Bresnahan (1982) and Nevo (1998).) Even without rich datasets, simulation allows 
investigators to describe the way in which their conclusions are, or are not, sensitive to 
baseline modeling assumptions. A range of plausible scenarios can therefore be 
evaluated.  

In the case of coordinated effects merger simulation we have expanded the set of 
models of firm behaviour being considered, from static to dynamic price setting models. 
While extending the set of models being considered is advantageous, it does not come 
without a price. For example, there are numerous alternatives to using grim strategies to 
sustain collusive arrangements. The good news is that the techniques outlined here can, 
at least in principle, be amended to also allow their evaluation. In particular, the results 
provided in Abreu (1988) provide an algorithm for checking whether more sophisticated 
‘simple penal codes’ are sub-game perfect Nash equilibrium strategies. On the other 
hand, we choose to focus on grim strategies because they are simplest, are well 
understood, do not assume that companies can punish optimally and will generally 
provide a coherent benchmark against which to judge whether there are likely to be 
increased incentives for tacit collusion. However, we do not pretend that this is the last 
word on the topic and we intend to return to more sophisticated treatments in 
subsequent papers.  

An area of particular concern in model specification is the underlying demand system 
(see Walker (2005)). Again, given enough data, such modeling choices can usually be 
tested against one another. Linear and log-linear demand specifications for example can 
be distinguished using a ‘Box-Cox’ test (see any good econometrics textbook.) This 
paper studies only the case in which demand curves are linear and marginal costs are 

 
 
3Their paper is, however, richer than this one in the sense that they study collusion under asymmetric information following the 
papers by Abreu, Pearce and Stachetti (1986, 1990). 
4I thank Mark Ivaldi for bringing Sabbatini’s interesting working paper to my attention. Pierluigi Sabbatini and I anticipate combining 
our respective research efforts into a single next version of our paper(s) if we can agree a common ‘best practice’ approach. At 
present, Sabbatini favours a notion due to Friedman (1971) called a ‘balanced temptation equilibrium,’ a related but somewhat 
different approach to that outlined here.  
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constant in output. For this special class of models, analytic results are derived for each 
component of the model, facilitating computation enormously. The techniques are 
illustrated here using a particular and simple numerical example. A full implementation of 
our ‘coordinated effects’ methodology using data from a real market, the Network Server 
(computer) market, as well as ‘best practice’ demand structures is provided in Davis, 
Huse and Van Reenen (2006). In that paper, we use random coefficient discrete choice 
demand structures following Berry (1994), Berry, Levinsohn and Pakes (1995) and Nevo 
(2001).  

The paper proceeds as follows. Section 2 develops the single period game that we 
assume is played by our firms and introduces a numerical example. The material in this 
section will be familiar from the unilateral effects merger simulation literature. Section 3 
introduces the dynamic game and shows that, to analyze it, we need only calculate one 
additional item beyond those required for the ‘unilateral effects’ merger simulation 
literature, namely the payoff to ‘defection’. Section 4 continues the numerical example, 
presenting some ‘coordinated effects’ merger simulations. In particular, an example is 
provided that demonstrates that when market structures are made more asymmetric by 
a merger, collusion can become more difficult to sustain after a merger, rather than less. 
These numerical results are therefore consistent with the recent theoretical results 
provided by Compte, Jenny and Rey (2002) and Kuhn and Motta (2004) and add weight 
to those arguing against a strict structural (market share or Herfindahl) based test for an 
evaluation of whether a merger increases the likelihood of collusion. In section 5 I 
conclude and suggest some directions for future research. 

2. Unilateral effects and the single period game 

This section presents the stage-game of the dynamic model. The stage game is simply a 
standard differentiated product Bertrand pricing game, identical to that used in the 
unilateral effects merger simulation literature by Werden and Froeb (1991), Berry (1994), 
Hausman et al (1994), Berry, Levinsohn and Pakes (1995) and Nevo (2001). In 
particular, I consider the case of linear demand systems; this facilitates the provision of 
analytic solutions for use in undertaking both unilateral and coordinated effects merger 
simulations. Doing so provides a set of results for antitrust authorities that are 
particularly simple to implement.  

Specifically, suppose that demand for product ℑ≡∈ },..,1{ Jk  may be written as a linear 
function of the prices of all the goods in the market: 

⎪⎩

⎪
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with demand intercept parameter  and slope parameter  describing the change in 
demand for product k when good j’s price increases by £1. Consider the pricing game 
wherein each firm f produces a subset of the available products, , and chooses 
the prices of those products to maximize its profits:  

ka kjb

ℑ⊆ℑf

 6



fj

j
jjj

jp

jforpts

pDcp
f

fj

ℑ∈≥

−∑
ℑ∈

ℑ∈

0..

)()(max
}|{  

where  and  is the marginal cost of product j, assumed constant. Notice 
that for the linear demand and constant marginal cost case, this objective function is a 
quadratic function of prices while the constraints are linear functions of prices so that the 
problem may easily be solved numerically using standard optimization tools for quadratic 
programs.

),...,,( 21 Jpppp = jc

5 Alternatively, provided equilibrium prices of all goods in the market are 
positive and all goods are sold in positive quantities as is universally assumed in the 
existing empirical literature (and so the constraints for this program do not bind in 
equilibrium), we may solve this problem analytically by examining the first order 
conditions to the unconstrained problem:  
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At this point, the literature on unilateral effects games has found it useful to introduce an 
‘ownership matrix’ to standardize these first order conditions. Specifically, define the 
(JxJ) matrix  with j,kth element:  Δ

⎩
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where, by construction jkkj Δ=Δ  for all . Notice that changing the ownership 
structure in unilateral effects merger simulations reduces solely to changing this 
ownership indicator matrix. Using the ownership indicators, firm f’s first order condition 
may be simply rewritten as:  
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Notice that there is one of these first order conditions from firm f’s objective function for 
every . Since every product is owned by some firm, under the behavioural 
assumptions that each firm prices its products to maximize its profits from the stage 
game, we obtain a total of J first order conditions—one for every product.  We may then 
‘stack up’ the first order conditions. To do so it is useful to introduce some matrix 
notation. Define the (Jx1) vector 

fk ℑ∈

( )',...,1 Jaaa =  and also the matrices: 

 
 
5Matlab, Gauss, Mathematica or Maple can all solve this kind of problem easily and quickly. Constraints requiring that equilibrium 
prices and quantities be non-negative may also be added easily using those quadratic programming tools. 
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 (where  is known as the ‘Hadamard’ or ‘element by element’ or ‘dot’ product). In 
the Appendix I show that given these definitions, we can write the demand system for all 
goods as , while the vector of first order conditions can also be written very 
compactly as 

B•Δ

pBapD ')( +=
0))((' =−•Δ++ cpBpBa . 

The solution to this set of equations is the Nash equilibrium vector of prices, 
 since, by construction, each firm is choosing the prices of its products 

to maximize its profits given the prices charged by other firms. Rearranging the first 
order conditions gives an analytic matrix expression for the Nash equilibrium prices of all 
products: 

),...,( 1
NE
J

NENE ppp =

( )cBaBBpNE )())('( 1 •Δ+−•Δ+= − . 

The beauty of the linear demand curve specification is that every object of interest can 
be computed easily for any ownership structure, Δ . For instance, given the expression 
for the Nash equilibrium prices above, equilibrium demands for each product are given 
by the vector  and profits derived from each product are 

 where  represents the element by element multiplication of the two Jx1 
vectors  and demands  respectively. The profits of each firm can 
therefore be calculated by adding across the owned products. If firm f owns product j 
and is the jth row of the ownership matrix 

NENE pBapD ')( +=
)()( NENE pDcp •− •

)( cpNE − NENE pBapD ')( +=

'
.jΔ Δ , then firm f’s Nash equilbrium profits 
 may be calculated using )( NE

f pΠ ( ).)'()()( '
.

NENE
j

NE
f pBacpp +•−Δ=Π .  

2.1 Unilateral effects merger simulations  

In a unilateral effects merger simulation, where firm f ‘s set of products and costs before 
and after the merger are respectively  and , and  and  for all 

 and  respectively. These ownership structure changes are captured in 
the matrix , so a ‘unilateral effects’ merger simulation with linear demands amounts to 
calculating the Nash equilibrium ‘NE’ prices in each case:  

PRE

fℑ
POST

fℑ PRE
jc POST

jc
PRE

fj ℑ∈
POST

fj ℑ∈

Δ

( )PREPREPREPRENE cBaBBp )())('( 1, •Δ+−•Δ+= −  

and  

( )POSTPOSTPOSTPOSTNE cBaBBp )())('( 1, •Δ+−•Δ+= − . 

Naturally, often data will not be available on marginal costs. If not, then the method 
suggested by the unilateral effects literature is to estimate the marginal costs using pre-
merger prices and an assumption, which may be tested, about the nature of price 
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competition in the pre-merger period. Specifically, given the observed pre-merger prices 
 and the ownership matrix PREp PREΔ , we may solve the first order conditions for pre-

merger marginal costs: 

( )PREPREPREPRE pBBaBc ))('()( 1 •Δ++•Δ= − . 

2.2 A numerical example:  

In this subsection we will consider a unilateral effects merger simulation, but we will use 
the same example demand structure and cost assumptions throughout the paper. 
Specifically, consider the case where there are a total of six products j=1,2,...,6 in the 
market and where there are no efficiencies that result from the merger, so that 

. Suppose further that the linear demand structure in a market and where 
the 1st product’s demand equation is given by: 

1== POST
j

PRE
j cc

6543211 3.03.03.03.03.0210 ppppppq +++++−=  

and the others, for j=2,..,6 are symmetrically defined with the coefficient –2 on own price 
and the coefficients 0.3 on rival products’ prices. In our formulae derived above 
therefore, we set each  and construct the matrix B to have –2’s along the diagonal 
and all off-diagonal elements take the value 0.3. 

10=ja

Table 1 reports the predicted static equilibrium prices under a variety of ownership 
structures. For example, the first column reports the ownership structure where every 
product is owned by a different firm while the sixth column reports the case where there 
is a single firm owning all six products. The intermediate columns report intermediate 
market structures so for example, (4,2) indicates that the first firm owns four products 
and the second firm owns two. Table 2 reports the resulting equilibrium profits.  

TABLE 1   Predicted static equilibrium prices for each product under a variety of market structures. The shaded cells 
represent the products produced by the largest firm under each ownership structure. 
 

 
Market structure 

 
Product (1,1,1,1,1,1) (2,2,2) (3,3) (4,2) (5,1) 6(Cartel) 

  
1 4.8 5.3 5.9 6.6 7.9 10.5 
2 4.8 5.3 5.9 6.6 7.9 10.5 
3 4.8 5.3 5.9 6.6 7.9 10.5 
4 4.8 5.3 5.9 6.6 7.9 10.5 
5 4.8 5.3 5.9 5.8 7.9 10.5 
6 4.8 5.3 5.9 5.8 6.0 10.5 
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TABLE 2   Predicted static equilibrium profits for each firm under a variety of market structures 
 

Market structure 
 

Firms (1,1,1,1,1,1) (2,2,2) (3,3) (4,2) (5,1) 6(Cartel)
 

1 28.9 63.4 105.0 139.0 188.5 270.8 
2 28.9 63.4 105.0 77.6 49.0  
3 28.9 63.4     
4 28.9      
5 28.9      
6 28.9      

Industry 
profits 173.0 190.0 210.0 217.0 238.0 270.8 

 
 

3. The repeated game  

The next step is to consider the above analysis as a stage game within the broader 
context of an infinitely repeated game. Following the repeated game literature, each firm 
is assumed to maximize the net present value (NPV) of its profits, and we require that at 
each point in the game tree the firm makes choices which are optimal given that it 
reached that node of the game tree so that we study sub-game perfect equilibria of the 
repeated game (Selten 1965). 

Following Friedman (1971), we will consider the feasibility of sustaining a candidate 
collusive equilibrium using ‘grim’ strategies. Friedman (1971) demonstrated that if each 
player adopted ‘grim’ strategies, and was sufficiently patient, then there can be a large 
number of sub-game perfect equilibria of the dynamic game, sometimes including the 
outcome that firms choose to price in a way that maximizes industry profits in each 
period of the game, ie, each stage-game. In contrast to Friedman, who considered the 
homogeneous products case, we will consider the differentiated product game.  

To do so, we must first introduce some notation. Denote the one period Nash equilibrium 
and collusive payoffs to firm f as  and  respectively. These are exactly the 
payoffs reported in Table 2 above. Similarly denote the one period gain to firm f from 
defection when all other firms are playing collusively as . We will discus how to 

compute  extensively in section 

NE
fπ
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fπ
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fπ
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fπ 3.1 below. 

When rivals are playing grim strategies a defector earns his one period defection payoff 
and then subsequently receives only his Nash equilibrium profits. Thus, the net 
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f
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f

collusion
f

f
Collusion

fV
δ

π
δ

−
=

1
)( . Hence, player f has no incentive to deviate 

from collusive pricing provided that:  
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In order to examine the incentives to collude using grim strategies, we must therefore 
consider the returns achieved by each firm in the three pricing scenarios—‘collusion’, 
‘Nash equilibrium pricing’ and ‘defection.’ We have already demonstrated—using 
unilateral effects analysis—how to calculate Nash equilibrium profits and also the returns 
to (perfect) collusion. It remains therefore only to calculate the payoff to defection.  

Before providing expressions for each component in this incentive compatibility 
constraint, we note that the only components in this equation that are not already 
evaluated in a unilateral effects merger simulation are (i) the payoff to defection  
and (ii) the discount factor 

defection
fπ

fδ . The former, like the Nash and Collusive equilibrium 
payoffs, depends directly on the nature of the static profit function for each firm and 
therefore may be easily calculated using the methodologies developed for the analysis 
of data generated by static pricing games (see below). 

In an antitrust case, the discount factor could usually be taken from internal documents 
specifying the company’s required rate of return. Alternatively, if companies are listed, 
CAPM or another rate of return model could be used to infer an appropriate discount 
rate for payoffs. Thirdly, more closely paralleling the theoretical literature, we can report 
the range of discount factors for which collusion could be sustained under any given 
industry structure. Since I examine a numerical example, here I take the latter approach.  

3.1 The payoff to defection  

Following the theoretical literature on repeated games, define the payoff to firm f from 
defection as the maximum amount of profit that could be achieved given its rivals’ prices 
(i.e. treating them as fixed). In the case most directly of interest, where firm f is deciding 
whether or not to defect from the tacitly collusive agreement, other firms will be choosing 
their prices to be the collusive prices, and so the static payoff to firm f when defecting is:  

fj
collusion

ffj

j

j

collusion

ffjjjjp

defection
f

jforkppD
andp

ts

ppDcp
f

fj

ℑ∈≤
≥

−≡
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∑
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..
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}|{

π
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Where 
f

p  denotes the vector of prices of goods produced by firm f, collusion

f
p

−
 denotes the 

collusive prices of other firms and where the last set of constraints enforce capacity 
constraints on the defecting firm. For the case of linear demand equations, this non-
linear maximization problem is again a quadratic objective function subject to linear 
constraints and so is easy to solve numerically, even for large problems, using standard 
methods—such as the quadratic programming toolbox provided as a standard element 
within Matlab or Gauss. In other cases, it must be solved using more general non-linear 
optimization techniques but even in those cases since it involves only an optimization, it 
is a simpler mathematical object to evaluate than the Nash Equilibrium that must be 
computed in unilateral effects merger simulations. Figure 1 describes the calculation of a 
‘defection’ price in the context of an example with two single product firms. Solving for 
the defection prices simply involves finding the location on the deviating firm’s best 
response function at the point where its rival is charging collusive profits. 
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In the case where capacity constraints do not bind and prices and quantities are positive 
in equilibrium, we can provide an analytical solution to this problem when demand 
curves are linear for arbitrary ownership structures. To do so we derive the first order 
conditions for this problem, which are just those computed for a single firm in the 
‘unilateral effects’ simulations evaluated when rival firms charge collusive prices.  

FIGURE 1 

p2 

p1 

Collusive prices 

NEp2

);( 121
*
1 cpRp =

);( 212
*
2 cpRp =Defectionp2

Prices after 
defection by firm 2 

Collusionp1

Collusionp2

);( 212
*
2 cpRp =

 

Considers the case with two single product firms. Each line shows a firm’s ‘reaction 
function’,  and  respectively, describing the price that 
maximizes the firm’s profits, given the price charged by the rival firm. Where these 
reaction functions intersect describes the Nash equilibrium prices. Collusive prices, 
those which maximize industry profits are also described. Each of these prices is 
calculated in a unilateral effects merger simulation. The ‘defection’ price is that which 
maximizes firms profits given that the rival is charging the collusive price. Here that can 
be found for each player by evaluating their reaction function price when their rival is 
charging the collusive prices.  

);( 121
*
1 cpRp = );( 212

*
2 cpRp =

In fact, the first order condition for this problem with a linear demand system may be 
written in terms of matrices and this facilitates the provision of an analytic solution to this 
problem. To do so, it helps to introduce some notation. Define for any (JxJ) matrix A, the 
sub-matrix  which corresponds to just the rows and columns of A from products 
owned by firm f. Similarly, define  to be the rows of A corresponding to products 
owned by firm f and the columns of A corresponding to products owned by other firms 
and the sub-matrix  which means the rows of A for f’s products and all columns of A. 
Similarly, for any (Jx1) vector , define  simply to be the rows of the vector a  
corresponding to products that firm f produces.  

],[ ffA

],[ ffA −

,.][fA
a fa

The first order conditions from the profit maximization problem that is defined above for 
the capacity unconstrained version of the ‘defection problem’ can be written as:  
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evaluated at ),( collusive

f

Defection

f
ppp

−
=  where collusive

f
p

−
 is parametric and Defection

f
p  is the 

price which solves this system of first order equations. We can stack up these moment 
conditions and obtain the vector equation: .0)()( ,.][

'
][., =−•Δ++ cpBpBa fff

6

Breaking up this expression so that we can write it in terms of prices of goods owned by 
firm f and prices of goods owned by rivals gives:  

[ ] [ ]( ) [ ]( ) 0],[
'

],[],[
'

],[,.][ =•Δ++•Δ++•Δ−
−−−
Collusive

fffff
Defection

fffffff pBBpBBcBa  

which can in turn be rearranged to give: 

[ ]( ) [ ]( ) [ ]( )    ],[
'

],[,.][],[
'

],[
Collusive

fffffff
Defection

fffff pBBcBapBB
−−− •Δ+−•Δ−−=•Δ+  

and hence we can solve for firm f’s defection prices analytically as: 

[ ]( ) [ ]( ) [ ]( )( )   ],[
'

],[,.][

1

],[
'

],[
Collusive

fffffffffff
Defection

f
pBBcBaBBp
−−−

−
•Δ+−•Δ−•Δ+−= . 

Having provided the definitions of the three core elements of the incentive compatibility 
constraint, we are now in a position to summarize the methodology and progress to our 
numerical examples of coordinated effects merger simulations.  

4. Coordinated effects merger simulations 

In this section we will present a numerical example of our methodology for evaluating the 
‘coordinated effects’ of mergers. Before doing so I summarize the methodology which 
involves taking the six steps reported in Table 3.  

 
 
6 Note that the notation , denotes the matrix  transposed. If the products are suitably ordered, we can write '

][.,fB ][.,fB [ ]][.,][., ff BBB −=  

and  so 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

− ],[

],[
][.,

ff

ff
f B

B
B [ ]'

],[
'

],[
'

][., fffff BBB −= . 
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TABLE 3   The procedure to undertake a coordinated effects merger simulation 
 

Step no. Description 
  

1 Estimate the differentiated product demand system 
 

2 Use the pre-merger period data to infer marginal costs for each product by using an appropriate assumption 
about the nature of pre-merger prices (usually that it is a static Bertrand—Nash equilibrium.) 
 

3 Calculate the static Nash and collusive equilibrium prices and payoffs, ),( NE
f

NE

f
p π  

and ),(   collusion
f

collusion

f
p π  respectively 

 
4 Calculate the ‘defection’ prices and profits, ),( defection

f
defection

f
p π  

 
5 Evaluate each component of the incentive compatibility constraint:7

f

NE
ffdefection

f
f

collusion
f

f
defection

ff
collusion

f VV
δ

πδ
π

δ
π

δδ
−

+>
−

⇔>
11

        )()(  

6 Evaluate ranges of fδ  needed to sustain collusion under ‘grim’ strategies. 
 

 
 
 

In order to perform a coordinated effects merger simulation, the only ‘new’ element that 
must be actively computed is the defection payoff, . Table 4 reports the 
defection payoffs for our numerical example. They are comparable directly to the 
numbers reported in Table 2 where static Nash equilibrium profits and collusive 

profits  were reported. For completeness, note that in the case of a cartel, the 
total payoff is 270.8 so that each single product firm in this symmetric situation earns the 
payoff, 

defection
fπ

NE
fπ

collusion
fπ

1.45
6

8.270
==collusion

fπ .  

 

TABLE 4   This table reports the calculated defection payoffs for each firm under each market structure in our numerical 
example. Payoffs are shown when firm 1 is the defecting firm. 
 

 Market structure: 
 

Firm (1,1,1,1,1,1) (2,2,2) (3,3) (4,2) (5,1) 6(Cartel) 
       

1 70.5 128.5 174.5 210.0 238.3 270.8 
2 35.0 52.0 57.1 31.2 19.7   
3 35.0 52.0         
4 35.0           
5 35.0           
6 35.0          

 
 

 

Having calculated each of the required objects from the stage game,  

 
 
7Some authors prefer to put payments at the end of periods whereas here they are implicitly placed at the beginning of the period. 
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),,( defection
f

NE
f

collusion
f πππ  for each firm f we can progress to an evaluation of the 

incentives for collusion captured in our key formula:  

f

NE
ffdefection

f
f

collusion
f

f
defection

ff
collusion

f VV
δ

πδ
π

δ
π

δδ
−

+>
−

⇔>
11

        )()(  

4.1 A first coordinated effects merger simulation 

We begin with the returns to tacit collusion for the single-product firms in our numerical 
example where market structure is (1,1,1,1,1,1) and the situation following three mergers 
so that the market structure becomes (2,2,2). The advantage of choosing to look at three 
mergers in this example is that, both before and after the merger, all firms are 
symmetric. That, in turn, facilitates presentation of the results. Table 5 reports the 
returns to collusion and also the returns to competition in the numerical example. The 
shading in the table shows the larger side of the incentive compatibility constraint for 
each market structure.  

First notice that collusion is easier to sustain at higher discount factors for any given 
market structure; within each market structure the shading is on the collusion side at 
higher discount rates. Second, notice that in this example, the set of discount factors 
which can sustain collusion gets broader. If we define a critical discount factor above 
which collusion is sustainable for any given market structure, in this example we can 
write .  *

)2,2,2(
*

)1,1,1,1,1,1( 6.0 δδ >>

TABLE 5   The returns to collusion and competition under the two symmetric market structures 
 
 (1,1,1,1,1,1) (2,2,2) 
   

�δ  CollusionV nCompetitioV  
CollusionV nCompetitioV

     
0 45.1 70.5 90 128 

0.1 50.1 73.7 100 136 
0.2 56.4 77.7 113 144 
0.3 64.4 82.9 129 156 
0.4 75.2 89.8 150 171 
0.5 90.2 99.4 180 192 
0.6 112.8 113.8 226 224 
0.7 150.4 137.8 301 276 
0.8 225.6 186.0 451 382 
0.9 451.2 330.4 902 699 

0.99 4512.4 2929.0 9025 6405 
 

 
 

4.2 Asymmetry and coordinated effects 

In this subsection I present an example of a situation where concentration actually 
reduces the likelihood of collusion. This is consistent with the recent theoretical literature 
which has suggested that coordination may be harder to sustain under asymmetry; see 
for example the references and discussion in the very nice survey paper provided by 
Ivaldi et al (2003).  
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Table 6 reports the results for two asymmetric mergers. In particular, consider mergers 
from the baseline market structure (4,1,1) to the alternate market structures (5,1) and 
(4,2) respectively. This could, for example, be the choice facing an antitrust authority 
when deciding whether to allow a small firm to merge with its larger or similar sized 
competitor. In this example, the left hand panel of the table reports that, with a market 
structure (4,1,1), collusive equilibria can be sustained with discount factors above 
approximately 0.8; each small firm and the large firm are both willing to support collusion 
above this point. However, notice that the columns comparing the two small firms’ 
incentives to collude relative to their incentive to cheat, clearly suggest that they are 
willing to cheat for a far wider range of discount factors than the firm producing four 
products. Thus, it is the small firms’ incentive compatibility constraints which bind in 
sustaining the collusive equilibria in this case. This observation is central to 
understanding the incentives to collude following the merger. In particular, when 
deciding whether to defect, it is the single product firms who have the incentive to free-
ride most on multi-product rivals for essentially the same reasons as induces them to cut 
prices most in the unilateral effects situation.  

The first merger examined is the merger of the two small firms, so that the market 
structure goes from (4,1,1) to (4,2). In that case, the range of discount factors that can 
sustain collusion changes little. In fact, the only substantive change is in the range of 
discount factors that will provide the large firm with an incentive to collude which 
increases from around 0.4 to around 0.5. This however is not the binding incentive 
compatibility constraint since it is the small firm who has the most to gain by defecting 
from a collusive arrangement and selling as much as it can.  

 

TABLE 6   Reports a coordinated effects merger simulation from the initial market structure (4,1,1) to two 
alternate market structures (4,2) and (5,1). The first merger has little impact on the range of discount
factors likely to sustain collusion while the latter makes collusion far less likely after the merger because 
the merger increases market asymmetries. 
 
  (4,1,1) (4,2) (5,1) 

δ  

Firm with 4 
products IC 
constraint 

Firms with 1 
product 

Firm with 4 
products 

Firm with 2 
products 

Firm with 5 
products 

Firm with 1 
product 

 Coll. Cheat Coll. Cheat Coll. Cheat Coll. Cheat Coll. Cheat Coll. Cheat 
             

0.0 181 210 45   71 181 210 90 128 226 238 45 71 
0.1 201 225 50   75 201 225 100 137 251 259 50 76 
0.2 226 243 56   80 226 245 113 148 282 285 56 83 
0.3 258 267 64   87 258 270 129 162 322 319 64 92 
0.4 301 299 75   96 301 303 150 180 376 364 75 103 
0.5 361 343 90 108 361 349 181 206 451 427 90 120 
0.6 451 410 113 127 451 419 226 245 564 521 113 144 
0.7 602 521 150 159 602 534 301 310 752 678 150 185 
0.8 903 743 226 222 902 766 451 439  1,128 992 226 266 
0.9 1,805 1,410 451 412  1,805  1,461 902 827  2,256   1,935 451 511 
 
 

 

The second merger creates a more concentrated but also more asymmetric market 
structure since it creates one very large firm owning five out of six of all of the products 
sold in the market. Following this merger, the ability to sustain collusion actually breaks 
down for all possible discount factors! Simply, the small firm’s payoff from participating in 
the collusive arrangement, given its’ very narrow product line, is too small relative to its 
incentive to deviate. Indeed, its payoff in the Nash equilibrium is actually higher than its 
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payoff under collusion since (i) in the Nash equilibrium the small firm produces far more 
than under collusion while (ii) the large firm has incentives not to price too low because 
in doing so it must charge low prices on all its products.8 For the small firm, in this 
instance, the incentive compatibility constraint is never satisfied since:  

δ
δ

δ
δ

 all for  ,
1

4971
)1(

45 Cheating
SmallFirm

Collusion
SmallFirm VV =

−
+<

−
= . 

These results, for example, suggest that mergers which involve the removal of a small 
firm, which a merger authority might consider to be a ‘maverick’ firm, one that is an 
impediment to effective coordination, need not make tacit coordination easier. In fact, by 
creating further asymmetries in the market, the removal of a small rival may even make 
it harder to collude.  

Note that this result, while similar in flavor to Compte, Rey and Jenny (2002), in the 
sense that asymmetry makes collusion harder, is rather different in character. In their 
model, capacity constraints determine both the ability to punish and in particular the 
temptation to cheat. These two effects mean that the small firm has both less ability to 
punish the large firm and the large firm has more ability to cheat. Thus, in their model, it 
is the large firm that will be more tempted to cheat. That is in contrast to the example 
provided above where it is the small firm who free-rides on the fact that the large firm will 
set relatively high prices even in the Nash equilibrium while the small firm’s share of 
collusive profits is relatively small.  

One reason this numerical example seems important is that it demonstrates that, in a 
general asymmetric differentiated product setting, the conditions required for a ‘folk 
theorem’ result do not hold—at least under grim strategies. As such, the differentiated 
product collusion game appears substantively different to the homogeneous product 
game typically studied. In particular, it is important to note that the intuition derived from 
the homogenous product results provided by Friedman (1971) does not universally 
extend to the differentiated product context. 

To finish let me note that, in our example, the results in Table 2 demonstrate that the 
post merger payoff to the largest firm in the static (one period) game is 139 under the 
(4,2) market structure but 188.5 under the (5,1) post-merger market structure. Thus the 
merger of (4,1,1) to (5,1) would likely generate far greater unilateral effects concerns 
than the merger to (4,2) and so our particular simulation exercise suggests the following 
conclusion: This merger investigation should focus on the potential unilateral effects of 
allowing the merger rather than the potential for coordinated effects.  

5. Conclusions 

This paper has shown how to perform merger simulations to evaluate the presence of 
‘coordinated’ effects of mergers. In doing so we extend the methods developed for the 
evaluation of mergers beyond the unilateral effects case. The method proposed here is 
entirely consistent with collusion theory and only requires a small additional amount of 
effort on the part of the agency or researcher relative to performing a unilateral effects 

 
 
8Recall from TABLE 2 that in a collusive arrangement the payoff to each single product firm is 270.8/6 = 45 (column headed cartel) 
while the Nash equilibrium payoff to the single product firm in the (5,1) market structure is 49. (See payoff to firm 2 in the (5,1) 
column.) The reason is that there’s a large ‘free-riding’ effect available to the small firm in the (5,1) static Nash equilibrium.  
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merger simulation. We believe the tools and techniques developed here will be useful for 
policy makers, providing a set of practical tools for evaluating the coordinated effects of 
mergers.  

We provide analytic results that are useful for a large class of demand structures and 
arbitrary ownership structures. However, by considering a numerical example, we have 
avoided a number of practical issues that would need to be addressed before applying 
these tools into the field.  

First, in practical settings, we must determine the length of a ‘period.’ Clearly, a period is 
appropriately defined as the amount of time that it would take for rivals to detect a pricing 
deviation and change their prices appropriately, which under grim strategies would mean 
reverting to the Nash equilibrium. We believe it will usually be possible to infer an 
appropriate period length on the basis of the observed historical frequency of price 
changes and timeliness of rival responses to news in a specific application, though 
deciding on an appropriate period length may require some judgment.  

Second, we must determine the sequence of future payoffs under both collusion and 
competition. Here, we choose to follow the theoretical literature which treats the 
subsequent games as identical and this is likely a sensible approach in many instances. 
In others it may be appropriate to assume that markets will grow at some rate over time. 
Either method makes strong assumptions, including the fact that we assume an absence 
of entry, product sets do not evolve and so on. Such assumptions, though strong, are of 
course identical to those made both by the unilateral effects merger evaluation literature 
and by investigators progressing without describing their understanding of the applicable 
model of the industry. Provided the results are interpreted with appropriate caution, and 
some sophistication, merger simulation provides a useful set of techniques to help in the 
evaluation of both the unilateral- and now coordinated-effects of mergers.  
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APPENDIX 
 
 

This appendix develops the matrix expressions useful when computing Nash equilibrium prices. 
The results are provided under the behavioural assumption that each firm prices its products to 
maximize its profits from the stage game but are sufficiently general to cope with an arbitrary 
ownership structure.  

We saw in the text that any firm f’s first order condition may be written as:  
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Notice that there are one of these first order conditions from firm f’s objective function for every 
. Since every product  is owned by some firm, we obtain a total of J first order 

conditions—one for every product being sold.  We may then ‘stack up’ the first order conditions. 

To do so it’s useful to introduce some matrix notation. Define the (Jx1) vectors  and 

 and also the (JxJ) matrices:  
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where B•Δ  is known as the ‘Hadamard’ or element by element matrix product’. 

We may then ‘stack up’ the first order conditions to obtain: 

0

11

11

11

111111111

1

1

11111

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΔΔΔ

ΔΔΔ

ΔΔΔ

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

JJ

jj

JJJJjJjJJJ

JkJkjkjkkk

JJjj

J

j

JJJjJ

kJkjk

Jj

J

k

cp

cp

cp

bbb

bbb

bbb

p

p

p

bbb

bbb

bbb

a

a

a

M

M

LL

MMM

MMM

LL

M

M

LL

MMM

LL

MMM

LL

M

M
 

The solution to this set of equations, , provides the prices at which each firm 
is maximizing its profits given the prices of others, and hence is the Nash equilibrium price 
vector to the stage game. The vector of first order conditions may be written more compactly in 
matrix terms as 

),...,( 1
NE
J

NENE ppp =

0))((' =−•Δ++ cpBpBa . Rearranging, we get cBapBB )())('( •Δ+−=•Δ+  
and hence Nash equilibrium prices can be computed using the matrix formula: 
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